Finite dimensional simple modules of deformed current Lie algebras
نویسندگان
چکیده
منابع مشابه
On permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملClassification of finite dimensional simple Lie algebras in prime characteristics
We give a comprehensive survey of the theory of finite dimensional Lie algebras over an algebraically closed field of prime characteristic and announce that the classification of all finite dimensional simple Lie algebras over an algebraically closed field of characteristic p > 3 is now complete. Any such Lie algebra is up to isomorphism either classical or a filtered Lie algebra of Cartan type...
متن کاملQuantum Dynamical coBoundary Equation for finite dimensional simple Lie algebras
For a finite dimensional simple Lie algebra g, the standard universal solution R(x) ∈ Uq(g) ⊗2 of the Quantum Dynamical Yang–Baxter Equation quantizes the standard trigonometric solution of the Classical Dynamical Yang–Baxter Equation. It can be built from the standard R–matrix and from the solution F (x) ∈ Uq(g) ⊗2 of the Quantum Dynamical coCycle Equation as R(x) = F 21 (x)R F12(x). F (x) can...
متن کاملFinite-dimensional Simple Poisson Modules
We prove a result that can be applied to determine the finitedimensional simple Poisson modules over a Poisson algebra and apply it to numerous examples. In the discussion of the examples, the emphasis is on the correspondence with the finite-dimensional simple modules over deformations and on the behaviour of finite-dimensional simple Poisson modules on the passage from a Poisson algebra to th...
متن کاملClassification of Finite-dimensional Semisimple Lie Algebras
Every finite-dimensional Lie algebra is a semi-direct product of a solvable Lie algebra and a semisimple Lie algebra. Classifying the solvable Lie algebras is difficult, but the semisimple Lie algebras have a relatively easy classification. We discuss in some detail how the representation theory of the particular Lie algebra sl2 tightly controls the structure of general semisimple Lie algebras,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2018
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2018.01.006